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Abstract

Normal modes and their dispersion are obtained for planar-zigzag form II (tttt) of syndiotactic polypropylene (sPP) in the reduced zone

scheme using Urey–Bradley force field and Wilson’s GF matrix method as modified by Higgs. It is observed that this all trans backbone

conformation can be characteristized by a band at 1233 cmK1 (calculated at 1239 cmK1). A comparison is made with the spectra of its

isotactic and helical form. Characteristic features of the dispersion curves such as crossing, repulsion and von Hove type singularities

(regions of high density-of-states) have been explained. Heat capacity obtained from the density-of-states agrees with the experimental data

up to 250 K at which the glass transition sets in and the experimental curve exhibits a marked change in slope.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Polypropylene, an important fiber forming polymer, is

known to exist in two tactic forms, i.e. isotactic and syndio-

tactic. Isotactic form has been well studied by Takeuchi

et al. [1]. They have specially studied methyl torsion using

inelastic neutron scattering and normal coordinate analysis.

However, relatively less work have been done on the softer

syndiotactic form. The syndiotactic form is known to crystal-

lize in three different conformational states; helical form I,

with ggtt as a repeat unit is the most common form [2–4], form

II has an all trans sequence (tttt) [5], and form III con-

formationally (t2g2t6g2) assumes some of the conformational

features of both forms I and II [6]. Here g and t denote gauche

and trans conformational states, respectively, and the sub-

script stands for the number of such residues in a repeat unit.

The vibrational dynamics of syndiotactic polypropylene

(sPP) of both forms I and II has been studied by several

workers, e.g. Schactschneider and Snyder [7], Zerbi and

Masetti [8] and others [7–10]. Most of this work is limited

either by the use of approximate force field, lack of
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dispersion curves and their eventual use in obtaining

thermodynamic parameters. Such infirmities seriously affect

not only assignments but also the profile of dispersion

curves, which in turn, affect density-of states and

thermodynamic parameters such as heat capacity as a

function of temperature. Recent studies [11] on thermal

degradation of syndiotactic polypropylene show that the

syndiotactic form is thermally more stable and more flexible

as compared to the isotactic polypropylene. This is also

supported by the relative magnitude of force constants.

In the present communication, we have accounted for all

these infirmities by using Urey–Bradley force field (UBFF),

which considers non-bonded interactions both in the gem-

and tetra-configuration. The dispersion curves, density-of-

states and heat capacity (10–460 K) thus obtained agree well

with the Athas Data Update [12]. A comparative study of the

isotactic and syndiotactic forms (forms I and II) is made to

identify conformational sensitive modes and other spectral

differences due to different orientation of the side group.
2. Theory
2.1. Calculation of normal mode frequencies

Normal mode calculation for a polymeric chain was
Polymer 46 (2005) 7386–7393
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Fig. 1. One chemical repeat unit of sPP.

V. Saxena et al. / Polymer 46 (2005) 7386–7393 7387
carried out using Wilson’s GF matrix method [13] as

modified by Higgs [14] for an infinite polymeric chain. The

vibrational secular equation to be solved is

jGðdÞFðdÞKlðdÞIjZ 0; 0%d%p (1)

where d is the phase difference between the modes of

adjacent chemical units, G(d) is the inverse kinetic energy

matrix and F(d) is the force field matrix for a certain phase

value. The frequencies ni in cmK1 are related to eigen values

by

liðdÞZ 4p2c2n2
i ðdÞ (2)

A plot of ni(d) versus d gives the dispersion curve for the ith

mode. The use of the type of force field is generally a matter

of one’s chemical experience and intuition [15]. In the

present work we have used Urey–Bradley force field [16]

Which has certain advantages over other fields such as

valance force field etc. In the UBFF (1) relatively less

parameters are required to express the potential energy, (2)

no quadratic cross terms are included, the interaction

between non-bonded atoms in gem- and tetra-configuration

can be included and (3) the arbitrariness in choosing the

force constants is reduced. Recently spectroscopically

effective molecular mechanics models have been used for

inter and intra molecular interactions consisting of charges,

atomic dipoles and Vander Waals interactions [17].
Table 1

Internal coordinates and Urey–Bradley force constants (md/Å)

Internal coordinates Force constants

n[Cb–H] 4.200

n[Cd–H] 4.150

n[Ca–H] 4.360

n[Ca–Cd] 3.300

n[Ca–Cb] 3.700

4[H–Cd–H] 0.390 (0.340)

4[H–Cb–H] 0.405 (0.295)

4[Ca–Cd–H] 0.495 (0.255)

4[Cd–Ca–H] 0.540 (0.220)

4[Cb–Ca–H] 0.550 (0.210)

4[Ca–;Cb–H] 0.370 (0.200)

4[Ca–Cd–Ca] 0.480 (0.175)

4[Cd–Ca–Cd] 0.500 (0.240)

4[Cd–Ca–Cb] 0.600 (0.220)

t[Ca–Cd] 0.008

t[Ca–Cb] 0.008

t[Cd–Ca] 0.008

Off-diagonal interactions

n[Ca–Cd]K4[Ca–Cd–H] 0.300

n[Ca–Cb]K4[Cb–Ca–H] 0.400

Note: n, 4, u, t denote stretch, angle bend, wag and torsion, respectively.

Stretching force constants between the non-bonded atoms in each angular

triplet (gem configuration) are given in parentheses.
2.2. Calculation of specific heat

Dispersion curves can be used to calculate the specific

heat of a polymeric system. For a one-dimensional system

the density of states function or the frequency distribution

function expresses the way energy is distributed among the

various braches of normal modes in the crystal, is calculated

from the relation

gðnÞZ
X vnj

vd

� �K1� �
njðdÞZnj

(3)

The sum is over all the branches j. Considering a solid as an

assembly of harmonic oscillators, the frequency distribution

g(n) is equivalent to a partition function. The constant

volume heat capacity can be calculated using Debye’s

relation

Cv Z
X

gðnjÞKNA

hnj

KT

� �2 expðhnj=KTÞ

expðhnj=KTÞK1
� �2

" #
(4)

with
Ð
gðniÞdniZ1 the constant-volume heat capacity Cv,

given by above equation, can be converted into constant-

pressure heat capacity Cp using the Nernst–Lindemann

approximation [18]:

Cp KCv Z 3RA0

C2
pT

CvT
0
m

(5)

where A0 is a constant often of a universal value [3.9!
10K3 K mol/J] and T0
m is the estimated equilibrium melting

temperature, which is taken to be 460.7 K [12].
3. Results and discussion

A chemical repeat unit of sPP is shown in Fig. 1. The

conformational repeat unit of sPP consists of two such

chemical repeat units containing 18 atoms, which give rise

to 54 dispersion curves. The frequencies of vibrations have

been calculated for phase values ranging from 0 to p at an

interval of .05p. Initially, force constants were transferred

from syndiotactic poly (4-methyl, 1-pentene) [19] and then

modified to obtain the ‘best fit’ to the observed infrared

(FTIR) spectra [7]. The final force constants along with the

internal coordinate are given in Table 1. Since the modes

above 1350 cmK1 are non-dispersive in nature, dispersion

curves are plotted in Figs. 2(a) and 3(a) for the modes below



Fig. 2. (a) Dispersion curves of sPP (1350–750 cmK1). (b) Density-of-states of sPP (1350–750 cmK1).
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1350 cmK1. For the sake of simplicity, modes are discussed

under two heads; non-dispersive and dispersive.
3.1. Non-dispersive modes

All modes above 1350 cmK1 are non-dispersive. The

assignments of these modes are given in Table 2. The

assignments have been made on the basis of potential

energy distribution (PED), band shape, band intensity and

appearance/disappearance of modes in similar molecules

with atoms placed in similar environment. Spectra reported
Fig. 3. (a) Dispersion curves of sPP below 550 cmK1
by Schactschneider and Snyder [7], Zerbi and Masetti [8],

Tadokoro et al. [20] and Greggoriou et al. [21] for various

tactic states of polypropylene have been made use of in the

present studies.

The calculated frequencies in the C–H stretching region

from 3100 to 2800 cmK1 are in good agreement with the

observed bands. The region from 1380 to 1470 cmK1

contains bending modes of the methyl group and scissoring

modes of the methylene group. The calculated frequencies

in this region fit well with the observed data. The PED’s

shows that CH3 symmetric bends mix with side chain Ca–Cb
. (b) Density-of-states of sPP below 550 cmK1.



Table 2

Non-dispersive modes of sPP

Frequency (cmK1) Assignment (% PED) at dZ0

Calc. Observed (IR)a

2959 2959 n[Cb–H](99)

2959 2959 n[Cb–H](99)

2928 2926 n[Cd–H](79)Cn[Ca–H](20)

2924 2926 n[Cd–H](99)

2917 2916 n[Ca–H](99)

2914 2915 n[Ca–H](80)Cn[Cd–H](19)

2882 2880 n[Cb–H](99)

2882 2880 n[Cb–H](100)

2882 2880 n[Cb–H](99)

2882 2880 n[Cb–H](99)

2857 2856 n[Cd–H](99)

2857 2856 n[Cd–H](99)

1464 1466 4[H–Cb–H](95)

1464 1466 4[H–Cb–H](94)

1463 1466 4[H–Cb–H](95)

1463 1466 4[H–Cb–H](94)

1459 1455 4[H–Cd–H](74)C4[Ca–Cd–H](21)

1456 1450 4[H–Cd–H](74)C4[Ca–Cd–H](18)

1384 1381 4[H–Cb–H](36)C4[Ca–Cb–H](33)Cn[Ca–Cb](19)

1381 1381 4[H–Cb–H](38)C4[Ca–Cb–H](35)Cn[Ca–Cb](21)

1372 1372 4[Cd–Ca–H](61)Cn[Ca–Cd](23)

1357b 1350 4[Ca–Cd–H](35)C4[Cb–Ca–H](26)C4[Cd–Ca–H](23)

1317b 1322 4[Cd–Ca–H](60)C4[Ca–Cd–H](14)Cn[Ca–Cd](12)

1307 1322 4[Ca–C–H](36)C4[Cb–Ca–H](22)C4[Cd–Ca–H](15)

860b 867 4[Ca–Cb–H](77)Cn[Ca–Cd](18)

860 867 4[Ca–Cb–H](78)Cn[Ca–Cd](12)

849 841 4[Ca–Cb–H](72)Cn[Ca–Cd](23)

196 – t[Ca–Cb](90)

a Ref.[7].
b These modes are slightly dispersed.
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stretch. The dispersion curves are essentially flat in this

region. The bands in the region 1300–1370 cmK1 corre-

spond to Ca–H bending and CH2 wag modes. The Ca–H

bend mode calculated at 1372 cmK1 and assigned to the

peak at the same value has 23% contribution from backbone

Ca–Cb stretch vibration. The other mode at 1307 cmK1 is

mixture of Ca–H bend and CH2 wag modes. Both these

modes are non-dispersive.

Methyl rocking modes calculated at 860 and 849 cmK1

at dZ0 are assigned to the observed peak at 867 cmK1.

These modes are mixed with side chain Ca–Cb stretch and

are non-dispersive. A comparison of modes of planar sPP

with helical sPP and iPP (Table 4) indicates that the non-

dispersive modes are well localized and not much affected

by change in configuration and conformation of PP chain.
3.2. Dispersive modes

The modes, which are dispersive, are mixed modes that

are highly coupled along the chain. These modes are given

in Table 3 at the zone center and zone boundary along with

their assignments.

An interesting feature of the dispersive modes of sPP is
their tendency to bunch towards the zone boundary. Such

situation is also observed in other syndiotactic polymers

[19]. It may arise when the PED of the two modes tends to

overlap towards the zone boundary. In the observed spectra

of sPP the 1233 cmK1 has been assigned to the planar all

trans conformation of the backbone. Spectral studies on

amorphous and crystalline samples show that its intensity

increases with crystallinity. In our present calculation this

mode is obtained at 1239 cmK1 at the zone center having a

PED’s of the CH2 twist and Ca–H bending mode. In the

planar form of syndiotactic polystyrene a skeletal mode is

calculated and observed at 1221 cmK1 [22]. It may be

inferred that this mode is characteristic of a planar backbone

with syndiotactic side group attachments. The CH2 twisting

mode calculated at 1202 cmK1 at the zone center is assigned

to the observed peak at 1200 cmK1. The energy of this mode

increases with increase in d and Ca–H bending starts

mixing. At the zone boundary this mode is calculated at

1226 cmK1 with large contribution coming from Ca–H

bending. Both the above-mentioned twisting modes bunch

and have same PED at the zone boundary. It is observed that

the modes, which bunch in pairs, have some commonality

in PED and hence appear to be strongly coupled. This



Table 3

All dispersive modes in sPP

Frequency

(cmK1)

Assignment (%PED) at dZ0 Frequency

(cmK1)

Assignment (% PED) at dZ1

Calc. Observed

(IR)a

Calc. Observed

(IR)a

1243 – 4[Ca–Cd–H](89) 1252 – 4[Ca–Cd–H](83)

1240 1233 4[Ca–Cd–H](36)C4[Cb–Ca–H](30)C4[Cd–Ca–H]

(22)

1252 – 4[Ca–Cd–H](83)

1239 1233 4[Ca–Cd–H](42)C4[Cb–Ca–H](29) 1226 1233 4[Ca–Cd–H](40)C4[Cb–Ca–H](31)C4[Cd–Ca–H]

(12)

1202 1200 4[Ca–Cd–H](99) 1226 1233 4[Ca–Cd–H](40)C4[Cb–Ca–H](31)C4[Cd–Ca–H]

(12)

1158 1153 n[Ca–Cd](35)Cn[Ca–Cb](15)C4[Cd–Ca–Cd](10) 1103 1095 n[Ca–Cd](36)Cn[Ca–Cb](22)C4[Ca–Cd–H](21)

1121 1130 n[Ca–Cb](36)C4[Ca–Cd–H](28)Cn[Ca–Cd](12) 1103 1095 n[Ca–Cd](36)Cn[Ca–Cb](22)C4[Ca–Cd–H](21)

1093 1095 n[Ca–Cd](59)C4[Cd–Ca–H](17) 1085 1095 n[Ca–Cd](56)C4[Cd–Ca–H](13)C4[Ca–Cd–H](10)

1046 – n[Ca–Cd](63)C4[Ca–Cb–H](17)C4[Cd–Ca–H](12) 1085 1095 n[Ca–Cd](56)C4[Cd–Ca–H](13)C4[Ca–Cd–H](10)

1035 – n[Ca–Cd](60)C4[Ca–Cd–H](21)C4[Ca–Cb–H](10) 997 972 4[Ca–Cd–H](28)C4[Ca–Cb–H](22)Cn[Ca–Cd](20)

944 962 4[Ca–Cb–H](34)Cn[Ca–Cb](33)C4Cd–Ca–H](10) 997 972 4[Ca–Cd–H](28)C4[Ca–Cb–H](22)Cn[Ca–Cd](20)

841 831 4[Ca–Cb–H](59)Cn[Ca–Cb](18)Cn[Ca–Cd](11) 851 831 4[Ca–Cb–H](67)C4[Ca–Cd–H](19)

827 828 4[Ca–Cd–H](89) 796 – 4[Ca–Cd–H](41)Cn[Ca–Cb](29)Cn[Ca–Cd](16)

811 – 4[Ca–Cd–H](42)Cn[Ca–Cb](34)Cn[Ca–Cd](11) 796 – 4[Ca–Cd–H](41)Cn[Ca–Cb](29)Cn[Ca–Cd](16)

495 492 4[Ca–Cd–Ca](45)C4[Cd–Ca–Cb](38) 450 – 4[Cd–Ca–Cb](35)C4[Ca–Cd–Ca](19)

C4[Cd–Ca–Cd](16)Cn[Ca–Cd](15)

427 – 4[Cd–Ca–Cd](34)C4[Cd–Ca–H](23)C4[Cb–Ca–H]

(14)C4[Cd–Ca–Cb](13)

450 – 4[Cd–Ca–Cb](35)C4[Ca–Cd–Ca](19)

C4[Cd–Ca–Cd](16)Cn[Ca–Cd](15)

375 – 4[Cd–Ca–Cb](56)C4[Cd–Ca–H](16)

C4[Cb–Ca–H](12)

383 – 4[Cd–Ca–Cb](47)C4[Cd–Ca–H](16)C4[Cb–Ca–H]

(14)

341 – 4[Cd–Ca–Cb](80) 383 – 4[Cd–Ca–Cb](47)C4[Cd–Ca–H](16)C4[Cb–Ca–H]

(14)

318 – 4[Cd–Ca–Cd](43)C4[Cd–Ca–Cb](41) 253 – 4[Cd–Ca–Cb](51)C4[Cd–Ca–Cd](25)Cn[Ca–Cd](10)

197 – t[Ca–Cb](96) 253 – 4[Cd–Ca–Cb](51)C4[Cd–Ca–Cd](25)Cn[Ca–Cd](10)

172 – 4[Cd–Ca–Cb](47)C4[Ca–Cd–Ca](35) 197 – t[Ca–Cb](97)

115 – t[Ca–Cd](49)Ct[Cd–Ca](39) 103 – 4[Ca–Cd–Ca](44)C4[Cd–Ca–Cd](29)

C4[Cd–Ca–Cb](10)

64 – t[Cd–Ca](51)Ct[Ca–Cd](44) 103 – 4[Ca–Cd–Ca](44)C4[Cd–Ca–Cd](29)

C4[Cd–Ca–Cb](10)

0 – n[Ca–Cd](38)C4[Cd–Ca–Cd](27)C4[Ca–Cd–Ca]

(23)

65 – t[Ca–Cd](46)Ct[Cd–Ca](42)

0 – t[Cd–Ca](45)Ct[Ca–Cd](43) 65 – t[Ca–Cd](46)Ct[Cd–Ca](42)

0 – 4[Ca–Cb–H](50)C4[H–Cb–H](46) 38 – t[Cd–Ca](49)Ct[Ca–Cd](45)

0 – 4[Ca–Cb–H](50)C4[H–Cb–H](46) 38 – t[Cd–Ca](49)Ct[Ca–Cd](45)

a Ref. [7].
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commonality may be the result of strong intrachain inter-

actions. This is true in case of polytetrafluroethylene [23],

polystyrene [22] and poly(4-methyl, pentene 1) [19].

The modes calculated at 1158 and 1121 cmK1 at the zone

center corresponding to the observed peak at 1153 and

1130 cmK1, respectively, are coupled modes of Ca–Cb side

chain and Ca–Cd backbone stretches. With increase in d the

frequency and contribution of side chain Ca–Cb stretch

increases in the former and decreases in the later. As in the

case of CH2 twisting modes, both these modes bunch at the

zone boundary (calculated at 1103 cmK1 corresponding to

the observed peak at 1095 cmK1) and have same PED. The

mode calculated at 1093 cmK1 is a mixed mode of

backbone Ca–Cd stretch and Ca–H bend at the zone center.

The CH3 rocking mode mixed with side chain Ca–Cb stretch

is calculated at 944 cmK1 and assigned to the observed peak

at 962 cmK1.
The calculated frequency at 827 cmK1 with major

contribution from CH2 rocking matches well with the

observed frequency at 828 cmK1. This mode is observed at

832 cmK1 in planar sPP [24] and it is very sensitive to

backbone conformation. It shifts to 812 cmK1 in helical

sPP [10].

Comparison of the modes for sPP (all trans), sPP

(helical) and iPP is shown in Table 4. The CH2 wag, CH3

rock and backbone C–C stretch and side chain C–C stretch,

these three forms and skeletal deformation modes have large

differences. These modes involve large coupling and are

mixed with each other. The difference in the observed

frequencies arises mainly because of the placement of the

side group in different lateral positions, which in turn brings

about the change in interaction constants, which are

responsible for the frequency shifts. A greater change is

expected in the low frequency region, but because of the



Table 4

Comparison of modes of sPP (all trans), sPP (helical) and iPP

Assignments Frequency (cmK1)

sPP all trans observed (IR) sPP helical observed (IR) IPP observed (IR)

CH3 asymmetric stretch 2959 2959 2956

CH3 symmetric stretch 2880 2882 2880

CH stretch 2916, 2905 2915 2907

CH2 asymmetric stretch 2926 2927 2925

CH2symmetric stretch 2856
a

2843 2868

CH3 asymmetric deformation 1466 1465 1459

CH2 scissoring 1455, 1450 1432, 1455 1454

CH3 symmetric deformation 1381 1379 1377, 1359

CH2 wag 1350 1287,1346 1378, 1305

CH2 twist 1200, 1226 1234b, 1202 1219, 1239

CH2 rock 831, 829b 842, 812 841, 807

CH3 rock 972, 867 977b, 870 997, 973

CH bending 1322 1332 1329

C–C stretch (backbone) 1154, 1095 1153, 1035 1167, 1153

C–C stretch (sidechain) 1130 906, 1005b 1103, 1044

C–C–C bending 492 535, 483, 468 452

a Only calculated modes are known.
b Ref. [24].
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non-availability of the spectra below 400 cmK1, comparison

is not possible. Although the spectra are not available below

400 cmK1, calculations are expected to be correct for more

than one reason. First, most of the frequencies occur in the

same range as the corresponding ones in other synthetic

polymers. Second, since the force constants, which provide

good matching in the higher frequency region, are also

involved in the lower frequency region, reasonable values

are expected in this region as well.
3.3. Characteristic features of dispersion curves

The modes below 500 cmK1 have some special features

like crossing repulsion etc. All such modes showing

crossover in sPP are listed in Table 5 along with the PED

and the d values at which these features occur. To ascertain

whether it is a crossing or a repulsion calculations at very

close intervals of dZ.001p have been performed and it was

found that the modes cross-over. From symmetry consider-

ations, it can be shown that when the approaching modes

belong to different symmetry species, they can cross over.

Since sPP has mirror plane of symmetry along the chain

axis, hence crossings are permissible [25]. Therefore, No

two dispersion curves both of which belong to the same

species can cross because this would imply the existence of

two modes of vibrations with the same symmetry species

and same frequency. This is also obvious from the Table 5 in

which we have shown the pair of modes, which cross,

belong to different symmetries, i.e. in plane and out-of-

plane modes. In sPP crossing occurs for the pair of modes

(115 and 172 cmK1) and (375 and 427 cmK1). Here we see

that both the modes which crossover are dispersive. The

intersection of acoustic modes at dZ.560p and dZ.741p
can be regarded as an inelastic collision of two phonons in
energy momentum space. Similar behavior is observed in

poly(3-capralactone) and poly(glycolic acid) [26,27].

In case of repulsion the two modes would exchange PED

after repulsion. It does happen in case of dispersion curves

which have zone center frequencies 7 and 64 cmK1 and

repel at dZ.18p. The PED of these modes exchange at this

d value. After repulsion these two modes diverges and again

repelled at dZ.81p. This interesting phenomenon of

exchange of character may be viewed as a collision in the

energy momentum space (3, p) of two phonons approaching

each other and moving apart after exchanging their PED.

3.4. Frequency distribution function and heat capacity

The frequency distribution function as obtained from

dispersion curves is shown in Figs. 2(b) and 3(b). As

explained in the theory section, the inverse of the slope of

the dispersion curves leads to the density of states, which

indicate how the energy is partitioned in various normal

modes. The peaks in the frequency distribution curves

compare well with the observed frequencies.

The frequency distribution function can also be used to

calculate the thermodynamical properties such as heat

capacity, enthalpy changes, etc. It has been used to obtain

the heat capacity as a function of temperature. We have

calculated the heat capacity of sPP in the temperature range

10–460 K using Debye’s equation. The calculated heat

capacity data is shown to be in good agreement with the

experimental measurements (Fig. 4) as obtained from

ATHAS data [12] when reduced to the results for a single

monomeric residue per unit. However, deviation is seen

above 305 K, which is the glass transition temperature.

Above this temperature the amorphous regions present in a

polymer pass on to rubbery state in which the different

segments along the chain backbone acquire energy to rotate



Table 5

Pair of modes that cross

Frequency

(dZ)

d#/p Before crossing After crossing

d*/p Frequency PED d*/p Frequency PED

i

0 0.56 0.55 34 t[Cd–Ca](47)Ct[Ca–Cd](40) 0.60 39 t[Cd–Ca](47)Ct[Ca–Cd](40)

0 0.56 0.55 34 4[Ca–Cd–Ca](40)C4[Cd–Ca–Cd]

(34)

0.60 38 4[Ca–Cd–Ca](37)C4[Cd–Ca–Cd]

(30)

ii

0 0.741 0.70 46 t[Cd–Ca](33)Ct[Ca–Cd](31)

C4[Ca–Cd–Ca](15)

C4[Cd–Ca–Cd](11)

0.75 48 t[Cd–Ca](43)Ct[Ca–Cd](39)

0 0.741 0.70 44 t[Cd–Ca](45)Ct[Ca–Cd](46) 0.75 46 t[Cd–Ca](44)Ct[Ca–Cd](46)

iii

115 0.43 0.40 164 4[Ca–Cd–Ca](40)

C4[Cd–Ca–Cb](38)

0.45 168 4[Ca–Cd–Ca](40)

C4[Cd–Ca–Cb](38)

172 0.43 0.40 155 n[Ca–Cd](26)C4[Cd–Ca–C]

(20)C4[Ca–Cd–Ca](17)

C4[Cd–Ca–Cb](10)

0.45 162 n[Ca–Cd](26)C4[Cd–Ca–Cd]

(20)C4[Ca–Cd–Ca](17)

C4[Cd–Ca–Cb](10)

iv

375 0.675 0.65 392 4[Cd–Ca–Cb](40)C4[Cd–Ca–H]

(18)C4[Cb–Ca–H](15)

0.70 394 4[Cd–Ca–Cb](41)C4[Cd–Ca–H]

(18)C4[Cb–Ca–H](15)

427 0.675 0.65 388 4[Cd–Ca–Cb](52)C4[Cd–Ca–H]

(10)

0.70 390 4[Cd–Ca–Cb](51)Cn[Ca–Cd](11)

d# corresponds to crossing/repulsion points. d* corresponds to the points before/after crossing/repulsion.
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around the covalent bonds due to increased thermal energy.

These segmental motions are not taken into account in the

normal mode calculations and cause the deviation. The glass

transition temperature depends on the side group present,

intermolecular cohesive forces and the chain geometry, as

these are sources of hindrances to the segmental mobility.
4. Conclusion

All characteristic features of the dispersion curves such

as regions of high density-of-states, crossing over and

repulsion have been well interpreted from the vibrational
Fig. 4. Variation of heat capacity of sPP as a function of temperature. Solid line
dynamics of syndiotactic polypropylene. A comparison is

made with the spectra of its isotactic and helical form to

identify the conformational sensitive modes. In addition the

heat capacity as a function of temperature in the region 10–

460 K has been successfully explained.
Acknowledgements

Financial assistance to one of the authors (PT) from the

Council of Science and Technology, UP is gratefully

acknowledged.
represents the theoretical values and (C) represents the experimental data.



V. Saxena et al. / Polymer 46 (2005) 7386–7393 7393
References

[1] Takeuchi H, Higgins JS, Hill A, Mocanachi A, Allen G, Sterling GC.

Polymer 1982;23.

[2] Cording P, Natta G, Ganis P, Temuussi PA. J Polym Sci Part C 1967;

16:2477.

[3] Rosa CD, Corradini P. Macromolecules 1993;26:5711.

[4] Auriemma F, Rosa CD, Corradini P. Macromolecules 1993;26:5719.

[5] Chatani Y, Maruyama H, Noguchi K, Asanuma T, Shiomura T.

J Polym Sci Polym Lett 1990;28:393.

[6] Chatani Y, Maruyama H, Noguchi K, Asanuma T, Shiomura T.

J Polym Sci Polym Phys Ed 1991;29:1649.

[7] Schachtschnisder JH, Snyder RG. Spectrochim Acta 1965;21:1527.

[8] Masetti G, Cabassi F, Zerbi G. Polymer 1980;21.

[9] Ishioka T, Masaoka N. Polymer 2002;43:4639.

[10] Hahn T, Suen W, Kang S, Hsu SL, Stidhou HD, Siedle AR. Polymer

2001;42:5813.

[11] Pang H, Xiao Y, Zhang P, Xing C, Zhu N, Zhu X, et al. Polym Degrad

Stab 2005;88:473.

[12] ATHAS DATABANK 1993.
[13] Wilson EB, Decius JC, Cross PC. Moleculer vibrations: The theory of

infrared and Raman vibrational spactra. New York: Dover Publi-

cations; 1980.

[14] Higgs PW. Proc Roy Soc (London) 1953;A220:472.

[15] Mannfors B, Palmo K, Krimm S. J Mol Struct 2000;556:1.

[16] Urey HC, Bradley HC. Phys Rev 1931;38:1969.

[17] Qian W, Mirikin NG, Krimm S. Chem Phys Lett 1999;315:125.

[18] Pan R, Verma-Nair M, Wunderlich B. J Therm Anal 1989;35:955.

[19] Pande S, Kumar A, Tandon P, Gupta VD. Vibr Spectrosc 2001;26:161.

[20] Tadokaro H, Kobayashi M, Ukita M, Yasupuku K, Murahashi S.

J Chem Phys 1965;42:4.

[21] Gregoriou V, Kandilioti G, Gatos KG. Vibr Spectrosc 2004;34:47–53.

[22] Rastogi S, Gupta VD. J Macromol Sci 1994;B33(2):129.

[23] Hannon MJ, Boerio FJ, Koenig JL. J Chem Phys 1969;50:2829.

[24] Nakaoki T, Yamanaka T, Ohira Y, Horii F. Macromolecules 2000;33:

2718.

[25] Bower DI, Maddams WF. The vibrational spectroscopy of polymers.

Cambridge: Cambridge University Press; 1989.

[26] Misra RM, Agarwal R, Tandon P, Gupta VD. Eur Polym J 2004;40:

1787.

[27] Agarwal R, Misra RM, Tandon P, Gupta VD. Polymer 2004;45:5307.


	Vibrational dynamics and heat capacity in syndiotactic poly(propylene) form II
	Introduction
	Theory
	Calculation of normal mode frequencies
	Calculation of specific heat

	Results and discussion
	Non-dispersive modes
	Dispersive modes
	Characteristic features of dispersion curves
	Frequency distribution function and heat capacity

	Conclusion
	Acknowledgements
	References


